A Redox-Dependent Pathway for Regulating Class II HDACs and Cardiac Hypertrophy

نویسندگان

  • Tetsuro Ago
  • Tong Liu
  • Peiyong Zhai
  • Wei Chen
  • Hong Li
  • Jeffery D. Molkentin
  • Stephen F. Vatner
  • Junichi Sadoshima
چکیده

Thioredoxin 1 (Trx1) facilitates the reduction of signaling molecules and transcription factors by cysteine thiol-disulfide exchange, thereby regulating cell growth and death. Here we studied the molecular mechanism by which Trx1 attenuates cardiac hypertrophy. Trx1 upregulates DnaJb5, a heat shock protein 40, and forms a multiple-protein complex with DnaJb5 and class II histone deacetylases (HDACs), master negative regulators of cardiac hypertrophy. Both Cys-274/Cys-276 in DnaJb5 and Cys-667/Cys-669 in HDAC4 are oxidized and form intramolecular disulfide bonds in response to reactive oxygen species (ROS)-generating hypertrophic stimuli, such as phenylephrine, whereas they are reduced by Trx1. Whereas reduction of Cys-274/Cys-276 in DnaJb5 is essential for interaction between DnaJb5 and HDAC4, reduction of Cys-667/Cys-669 in HDAC4 inhibits its nuclear export, independently of its phosphorylation status. Our study reveals a novel regulatory mechanism of cardiac hypertrophy through which the nucleocytoplasmic shuttling of class II HDACs is modulated by their redox modification in a Trx1-sensitive manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

HATs off to Hop: recruitment of a class I histone deacetylase incriminates a novel transcriptional pathway that opposes cardiac hypertrophy.

Histone acetylation, regulated by two antagonistic enzymes - histone acetyltransferases (HATs) and histone deacetylases (HDACs) - results in transcriptional changes and also plays a critical role in cardiac development and disease. A new study shows that overexpression of the atypical transcriptional corepressor homeodomain-only protein (Hop) causes cardiac hypertrophy via recruitment of a clas...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

Role of histone deacetylase 2 and its posttranslational modifications in cardiac hypertrophy

Cardiac hypertrophy is a form of global remodeling, although the initial step seems to be an adaptation to increased hemodynamic demands. The characteristics of cardiac hypertrophy include the functional reactivation of the arrested fetal gene program, where histone deacetylases (HDACs) are closely linked in the development of the process. To date, mammalian HDACs are divided into four classes:...

متن کامل

Class II Histone Deacetylases Act as Signal-Responsive Repressors of Cardiac Hypertrophy

The heart responds to stress signals by hypertrophic growth, which is accompanied by activation of the MEF2 transcription factor and reprogramming of cardiac gene expression. We show here that class II histone deacetylases (HDACs), which repress MEF2 activity, are substrates for a stress-responsive kinase specific for conserved serines that regulate MEF2-HDAC interactions. Signal-resistant HDAC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 133  شماره 

صفحات  -

تاریخ انتشار 2008